Selective metabolism of vincristine in vitro by CYP3A5.
نویسندگان
چکیده
Clinical outcomes of vincristine therapy, both neurotoxicity and efficacy, are unpredictable, and the reported pharmacokinetics of vincristine have considerable interindividual variability. In vitro and in vivo data support a dominant role for CYP3A enzymes in the elimination of vincristine. Consequently, genetic polymorphisms in cytochrome P450 (P450) expression may contribute to the interindividual variability in clinical response, but the contributions of individual P450s and the primary pathways of vincristine metabolism have not been defined. In the present study, vincristine was incubated with a library of cDNA-expressed P450s, and the major oxidative metabolites were identified. CYP3A4 and CYP3A5 were the only P450s to support substantial loss of parent drug and formation of the previously unidentified, major metabolite (M1). The structure of M1, arising as a result of an oxidative cleavage of the piperidine ring of the dihydro-hydroxycatharanthine unit of vincristine, was conclusively established after conversion to suitable derivatives followed by spectroscopic analysis, and a new pathway for vincristine metabolism is proposed. CYP3A5 was more efficient in catalyzing the formation of M1 compared with CYP3A4 (9- to 14-fold higher intrinsic clearance for CYP3A5). The formation of M1 was stimulated (3-fold) by the presence of coexpressed cytochrome b5, but the relative efficiencies of M1 formation by CYP3A4 and CYP3A5 were unaffected. Our findings demonstrate that in contrast to most CYP3A biotransformations, the oxidation of vincristine is considerably more efficient with CYP3A5 than with CYP3A4. We conclude that common genetic polymorphisms in CYP3A5 expression may contribute to the interindividual variability in the systemic elimination of vincristine.
منابع مشابه
Effect of CYP3A5 expression on vincristine metabolism with human liver microsomes.
Vincristine is preferentially metabolized to a secondary amine, M1, by CYP3A5 with a 9- to 14-fold higher intrinsic clearance than CYP3A4 using cDNA-expressed enzymes. The genetically polymorphic expression of CYP3A5 may contribute to interindividual variability in vincristine efficacy and toxicity. The current study quantifies the contribution of cytochromes P450 (P450s), including CYP3A4 and ...
متن کاملDmd057000 1163..1173
Metabolism by cytochrome P4503A (CYP3A) is the most prevalent clearance pathway for drugs. Designation of metabolism by CYP3A commonly refers to the potential contribution by one or both of two enzymes, CYP3A4 and CYP3A5. The metabolic turnover of 32 drugs known to be largely metabolized by CYP3A was examined in human liver microsomes (HLMs) from CYP3A5 expressers (*1/*1 genotype) and nonexpres...
متن کاملApparent high CYP3A5 expression is required for significant metabolism of vincristine by human cryopreserved hepatocytes.
Vincristine is metabolized to one primary metabolite, M1, by cDNA-expressed CYP3A4 and CYP3A5 and by CYP3A enzymes in human liver microsomes. For both systems, CYP3A5 is predicted to mediate approximately 80% of the CYP3A metabolism for individuals with high CYP3A5 expression (at least one CYP3A5(*)1 allele). In the current study, the role of CYP3A5 was quantified in the metabolism of vincristi...
متن کاملIn-Vitro Anti-Proliferative and Pro-Apoptotic Properties of Sutureja Khuzestanica on Human Breast Cancer Cell Line (MCF-7) and Its Synergic Effects with Anticancer Drug Vincristine
Satureja khuzestanica Jamzad (Marzeh Khuzestani in Persian) is an endemic plant that iswidely distributed in the southern part of Iran. Despite the number of papers published on thisplant, no one has focused on its anticancer effects. Therefore, the present study was designedto investigate the selective cytotoxic and anti-proliferative properties of satureja khuzestanicatotal extract (SKE). MCF...
متن کاملDmd049940 1566..1574
The purpose of this study was to determine the impact of CYP3A5 expression on inhibitory potency (Ki or IC50 values) of CYP3A inhibitors, using recombinant CYP3A4 and CYP3A5 (rCYP3A4 and rCYP3A5) and CYP3A5 genotyped human liver microsomes (HLMs). IC50 ratios between rCYP3A4 and rCYP3A5 (rCYP3A5/rCYP3A4) of ketoconazole (KTZ) and itraconazole (ITZ) were 8.5 and 8.8 for midazolam (MDZ), 4.7 and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 34 8 شماره
صفحات -
تاریخ انتشار 2006